1 Aniudl) daa sal) Angld) o palaal)

Member Pointers

It has already been stated that a pointer is a variable which holds the
memory address of another variable of any basic data type such as int, float
or sometimes an array. So far, it has been shown that how a pointer variable
can be declared as a member of a class.
For example, the following declaration of creating an object
Class sample
{
Private :
int x;
float y;
char s;
public:
void getdata();
void display();
$5
Sample *ptr;

Which ptr is apointer variable that holds the address of the class object
sample and consists of three data members such as int x, float y, and char

s ,and also holds member functions such as getdata() and display().

2 Aniudl) daa sal) Angld) o palaal)

The pointer to an object of class vaiable will be accessed and processed in
one of the following ways .

First way :- (*object name).member name=variable;

The parentheses are essential since the member of class period(.) has a
higher precedence over the indirection operator (*).

Second way:- object name ->member name=variable;

The pointer to the member of a class can be expressed using dash(-)

followed by the greater than(>).

Example 1: Write a simple program using (¥) to represent class pointer.

Finclude <i1ostream. h:>
cla== =student
i
private:
int =tageno;
int age:
char =sex;
float height
float weight;
public:
void getinfal):
vold disinfol);
T S~e2nd of class definition
volid student: getinfof)

cout << "stage number: " Ccin:r=tagenoc;
cout<< "Age: " cinzrage:
cout<{"Sex " Ccin:>=ex;
cout << "Height " cin:rheight ;
cout< < "Weight " cinyrweight
¥

volid student: disinfol)

i

cout<< "Stage number = " cout < <=tageno; cout << "
cout< < "hge= " cout < <age:; cout << "nt
cout<:"Sex = " cout < {=ex: cout<g"~n";
cout< < "Height =": cout < <height cout<<"mn":
cout << "WMeight = cout < <weight

H

void maing)

i

=tudent =*=ptr:

ptr=new =tudent

cout<< "enter the followving information'<<endl:
(*ptr) getinfo {3

cout<endl

cout< < "contents of class "<<endl;

(*ptr) disinfafl:

3 Aniudl) daa sal) Angld) o palaal)

Example 2: Write a simple program using (->) to represent class pointer.

Binclude <iostream. h:
claz=z student

private:
int =tageno;
int age;
char =e=;
float height:
float weight:
public:
volid getinfof);
wvold disinfol):

¥ ssend of clas=s definition

void student: getinfol)

{
cout<<" Stage number " Ccin:r=tagenoc; cout<<endl;
cout<<" bg=s: " cin:rage:; cout<<endl;
cout<< "Sex " Cins r=ex; cout<<endl:
cout< < "Height :"; cinzrheight ; cout<<endl
cout< < "Weight " cin:rweight

b

void =tudent: :disinfol)

cout< < "Stage number = " cout<<=tageno; cout<<"~n";
cout<<" Ags= " cout < <age; cout<"~n";

cout<¢ "Sex = " cout<<=ex; cout<<"~n";
cout< < "Height " cout<<height cout<g"~n";
cout< < "Weight cout{{weight:

¥

wolid maing)

=ztudent *#ptr:

ptr=new =student:

cout<<" enter the following information"<<endl:
ptr—:getinfol):

cout<<" “n contents of class “"<<endl;
ptr—rdisinfol):

This pointer

It is well known that a pointer is a variable which hold the memory
address of another variable. Using the pointer technique, one can
access the data of another variable indirectly. The This pointer is a

variable which 1s used to access the address of the class itself.

4 Aniudl) daa sal) Angld) o palaal)

Example 1:Write an oo program to display the address of class using

this pointer

Finclude <io=stream.h>
clas=s sample

i

priwate
int =:

public:
inline woid di=plaw():

¥

inline volid =ample: displawi)
cout << "object address = "<<thi=:
cout < <endl

¥

woid madirnd)

1
=amnple objl. . obj2.obj3:;
obijl displawi):
obiZ2 . . displaswi():
obi3 . di=splaw():

¥

The above program create three objects,objl,0bj2,0bj3 and displays each

object’s address using this pointer. The display() member function is used to

give the address of the object

Example 2:Write an oo program to display the content of class

member using this pointer

Hirncluande <ico=tr==m.l =
=lass=s =amnpl=
+
Drisrate
dxat =z
Ppabl ac
idrmlimne=e wwoid di=splass({ 3

gh;ljJﬂE wroid =ample: - displassi 2
% thi=—>>==20:
ot < < bhis—>=
oAt < se=rndl o
%Gid m=ixai 3

=ample olbg d o
obil di=plassid 3 :
¥

5 Aniudl) daa sal) Angld) o palaal)

References Members
A class data member may define as reference. For example:

class Image {

int width;

int height;

int &widthRef;

I/

$5

As with data member constants, a data member reference cannot be
initialized using the same syntax as for other references:
class Image {

int width;

int height;

int &widthRef = width; // illegal!

/...

K

The correct way to initialize a data member reference is through a member
initialization list:

class Image {

public:

Image (const int w, const int h);

private:

int width;

int height;

int &widthRef;

6 Aniudl) daa sal) Angld) o palaal)

/...

¥
Image::Image (const int w, const int h) : widthRef(width)

{
-

}

This causes widthRef to be a reference for width.

Example 1:Write an oo program to represent reference member of rectangle

class

¥ include <iostream.h:
claz=s Rectangle

public:
Fectangle(const int 1, const int w);
int arsalint 1 J:

public:
int length;

int width;
const int &height;

I

Eectangle :: Rectangle(const int 1. const int w):length(l).width(w) height{l)
{

cout<¢" reference member height= "<{<height;

¥
int Rectangle::areaf{int 1)
{
return (1*1);
¥
vold main()
R

Fectangle ny_rectanglei(s.?);
cout<{'n';
cout<{"area=
cout<< my_rectangle area{ my_rectangle.width);
cout<{ '

7 Aniudl) daa sal) Angld) o palaal)

Example 2:Write an oo program to represent reference member of point

class

¥ include <iostream. hir
clas=s point

rublic:
point{con=t int 1, con=st int w);
int sumiint 1,int w J;

public:
int =;
int v:
const int z;

r

point :: pointi{const int 1, const int wli=(l).wiw).=z(1l)

1

cout<<" reference member height=

F

int point::sumf{int 1.int w)

d

LA

return (l4w);

F

woid maini)

point pti&.7):
cout<s'sn';

cout << "summation=
cout<< pt.sum{ pt.=.pt.v);
cout<g "t

Class Object Member

A data member of a class may be of a user-defined type, that is, an object of

another class. For example, a Rectangle class may be defined using two

8 Aniudl) daa sal) Angld) o palaal)

Point data members which represent the top and bottom-right corners of the

rectangle:

Example 1: Write a simple program to represent class object member.

¥ include <iostream. h:
clas=s point

1
int =val,vyval;
public:
point{int =, int v):

pDint::pDint(int ®=.int w)

mval=x;

ywal=y;

cout<<"®xval before change= "<<xval<<endl;
cout<<"yval before change= "<<yval<<endl;
mEval=x+5;

wwal=v+5;

cout<<"=®mval after change= "<<zwval<{<endl:
cout<<"yval after change= "<<ywval<<endl;

claz= Rectangle

public:
Rectangleiint l.int r.int b.int t};
int volume{int 1.int r,int b,int t);
private:
point length:
point width;
T

REectangle :: Rectangle({int l.int r.int b.int t):length(l,r) . widthi{b, t)

cout<<"the constructor iz uszed to initiate the walue of clas=s point";

I
int Rectangles: : wolume(int l.int r.int b.int t)

{
cout << "volune=
returni l+r+b+t)

¥

void main()
Rectangle my_rectangle(3.4.2.3);
cout<<'~n';
cout<< my_rectangle. volume(3, 4.5, 33;
cout<<'~n';

9 Aniudl) daa sal) Angld) o palaal)

Example 2: Write a simple program to represent class object member.

include <iostrean.h:
cla=s=s =gquare
i public:
int =val:
public:
square(int =)

F
Squarse: (=quarelint =)
1
Eval==+3;
cout<<"®x wal after change= "<<xval<<endl:;
h

clas=s =SJuarearea

public:
squarearealint 1)
int areafint 1);

private:
square length;
T
squarsarsa . =quarearealint 1) lengthil)
1
cout << "length before change= "<{<l<{<endl;
h
int =guarearea: arealint 1)
1

cout << "areas=
returni 1*1) ;

¥

wiold maini]

i squarearea =(3);

square s=(3);
cout<d "™~n';
cout<< =. areai==s.xval):
cout<d "~n';

10 Aniudl) daa sal) Angld) o palaal)

Arrays as Class Member Data

Defining Arrays

Like other variables in C++, an array must be defined before it can be used
to store information.

And, like other definitions, an array definition specifies a variable type and a
name. But it includes another feature: a size. The size specifies how many
data items the array will contain.

It immediately follows the name, and is surrounded by square brackets.

Figure 1 shows the syntax of an array definition.

Data type of array
Name of array
“ ’— Size of array

T
int agel4];

Brackets delimit array size.

Figurel: syntax of array definition

The items in an array are called elements (in contrast to the items in a
structure, which are called members). As we noted, all the elements in an
array are of the same type; only the values vary. As specified in the

definition, the array has exactly four elements.

11 Aniudl) daa sal) Angld) o palaal)

Note:- the first array element is numbered 0. Thus, since there are four
elements, the last one is number 3. This is a potentially confusing situation;
you might think the last element in a four-element array would be number 4,

but it’s not.

#Hinclude <iostream.h>

class arr

{

private:

enum { MAX = 3 }; //constant definition
intarfMAX]; // array of integers

public:
void get() //put number on stack
{
iNnt x, i;
for (i=0;i<=MAX;i++)
{cin >> x;
arli]l] = x; ¥;
¥
void show ()
{
imt i:
for (i=0;:i==NMNMAX:; i++)
cout =< arlil;
¥

¥; // end class
inmntmain()

{

arral;
al.get():;
al.show < ():;
returm O;

¥

12 Aniudl) daa sal) Angld) o palaal)

Defining Multidimensional Arrays
The array is defined with two size specifies, each enclosed in brackets:

int dimen2|[5][3];

elem = dimen2|[x][y];

Of course there can be arrays of more than two dimensions. A three-
dimensional array is an array of arrays of arrays. It is accessed with three
indexes:

int dimen3[5][3][4];

elem = dimen3|x][y][z];

Strings as Class Members

#H#include <iostream._h>
include <string>

class part

{

private:

char partname[30]; //mame of widgetpart
intpartnumber; //1D number of widget part
double cost; //cost of part

public:

void setpart{char pnamel], int pn, double ¢}
{

strepy{partname, pname};

partnumber = pn;

cost= ¢C;

h

13 Aniudl) daa sal) Angld) o palaal)

void showpart() //display data
{

cout << "\nName=" << partname;
cout << ", number="<< partnumber;

cout << ", cost=S" << cost;
¥

5

intmain()

{

part partl, part2;
partl.setpart("ABC",4473,217.55);
part2.setpart(”"XYZ",9924,419.25);
cout << "\nFirst part:"; partl.showpart();
cout << "\nSecond part:"; part2.showpart();
cout << endl;

return O;

¥

Strings as Class Members — cont.

[] This program defines two objects of class part and gives them values
with the setpart() member function. Then it displays them with the
showpart() member function. Here’s the output:

[1 First part:

[J Name= ABC, number=4473, cost=$217.55

[J Second part:

[J Name= XYZ, number=9924, cost=$419.25

[1 In the setpart() member function, we use the strcpy() string library
function to copy the string from the argument pname to the class data
member partname. Thus this function serves the same purpose with

string variables that an assignment statement does with simple

14 Aniudl) daa sal) Angld) o palaal)

variables. (A similar function, strncpy(), takes a third argument, which
is the maximum number of characters it will copy. This can help
prevent overrunning the array.)

[1 Besides those we’ve seen, there are library functions to add a string to
another, compare strings, search for specific characters in strings, and

perform many other actions.

Object Arrays

e An array of a user-defined type is defined and used much in the same
way as an array of a built-in type. For example, a pentagon can be
defined as an array of 5 points:

Point pentagon|[5];

e This definition assumes that Point has an ‘argument-less’ constructor
(i.e., one which can be invoked without arguments). The constructor is
applied to each element of the array.

e The array can also be initialized using a normal array initializer. Each
entry in the initialization list would invoke the constructor with the

desired arguments.

When the initializer has less entries than the array dimension, the
remaining elements are initialized by the argument-less constructor.
For example,
Point pentagon[5] = { Point(10,20), Point(10,30), Point(20,30),
Point(30,20) };

15 dip) Azl Al o yalaal

e initializes the first four elements of pentagon to explicit points, and

the last element is initialized to (0,0).

Arrays of Objects

o Wecanalso create an array of objects. We'll look at a situations: an array of English
distances.

o Anarray of a user-defined type is defined and used much in the same way as an array
of a built-in type. For example, a pentagon can be defined as an array of 5 points:

Point pentagon|[5);

o This definition assumes that Point has an ‘argument-less’ constructor (i.e., one which
canbe invoked without arguments). The constructoris applied to each element of the
array.

0 Thearray can also be initialized using a normal array initializer. Each entry in the
initialization list would invoke the constructor with the desired arguments. When the
initializer has less entries than the array dimension, the remaining elements are
initialized by the argument-less constructor. For example,

Point pentagon|[5] = { Point(10,20), Point(10,30), Point(20,30), Point(30,20)};

0 initializes the first four elements of pentagon to explicit points, and the last element is
initialized to (0,0).

16 Aniudl) daa sal) Angld) o palaal)

Example 1: Write a simple program to represent array of class object

point .

finclude<iostream. h:
cla=z= point {
int =wal,ywal;
pablie
vold =etpti{int =.int w)

1
Eval=x;
yval=v;
¥ . . .
vold off=etptiint =.int w)
1
Eval+==;
yval+=v;
couts<xEvalsiywal;
r
void main()
{ int d.f;

point pt[2]:

cout<<"enter the waluse of d & £";
cinxrdr»f;

pt[0] . =etptid,.f):

cout< <endl ;

pt[l] . setpt (30,40 ;

pt[0] offsetpti2.2);
pt[l] offsetpt (4.6);

¥

17 Aniudl) daa sal) Angld) o palaal)

Example 2: Write a simple program to represent array of class object

rectangle.

¥ include <iostream. h:
claz=s Hectangle

public:
int length ., width;
int areal

{

¥
} .

int mainf

return length # width;

Rectangle my_rectangle[4]:;
int j=1;
for (int 1=0;1i<4;i++)

i

cout<{"enter length { " <<j <¢ ") "<¢endl;
cinyemy_rectangle[i].length ;

cout<{"enter width { " <<j <¢ ") "<cendl;

cinymy_rectangle[i].width ;

cout<< "area ("¢< 0§ <<")" ¢¢" ="<¢<my_rectangle[i].area{);

cout<<endl;

1=1+1;

I ##end for loop
return 0;

18 Aniudl) daa sal) Angld) o palaal)

Example 3: Write a simple program to represent array of class object distance

¥include <iostrean. b
A S S S S S S S S S
cla=s=s Distance SsDiztance cla=s=

i

Lrivate:

int feet;

float inches:

public:

void getdist() Ssget length from user

1

cout << "~n Enter feet:
cout << " Enter inches:

cin rr feet;
cin rr inches;

void showdist() const sodisplay distance

d

h

Y
P S
int mainf)

cout<<fest<¢" "<{inches<<endl;

Distance dist[100]; Ssarray of objects distances
int n=0; Ssoount the entries
char ans; SAumer responsze [y oor no)

cout << endl;

do | soget distances from user
cout <¢ "Enter distance number " << n+l:
dist[n++].getdist(); Jostore distance in array

cout << "Enter another (v.n)?:
Cih »» Aans;

Y whilef{ ans !'= 'n'); Ssquit 1f user types n’
for{int j3=0; j<n; j++) ssdisplay all distances
cout << "~nlistance number " << j+1 << " 1= "
dist[j].showdist();

cout << endl;
return 0;

¥

19 Aniudl) daa sal) Angld) o palaal)

In this program the user types in as many distances as desired. After each
distance is entered, the program asks if the user desires to enter another. If
not, it terminates, and displays all the distances entered so far. Here’s a
sample interaction when the user enters three distances:

Output:-

Enter distance number 1

Enter feet: 5

Enter inches: 4

Enter another (y/n)? y

Enter distance number 2

Enter feet: 6

Enter inches: 2.5

Enter another (y/n)? y

Enter distance number 3

Enter feet: 5

Enter inches: 10.75

Enter another (y/n)? n

Distance number 1 is 5°-4”

Distance number 2 is 6’-2.5”

Distance number 3 is 5°-10.75”

Pointers to Objects
Pointers can point to objects as well as to simple data types and arrays.

We’ve seen many examples of objects defined and given a name, in

statements like

20 Aniudl) daa sal) Angld) o palaal)

Distance dist;

where an object called dist is defined to be of the Distance class. Sometimes,
however, we don’t know, at the time that we write the program, how many
objects we want to create. When this is the case we can use new to create
objects while the program is running. As we’ve seen, new returns a pointer

to an unnamed object.

Example 4

#include <iostream.h>

class Distance //English Distance class
{
private:

int feet;

float inches;

public:

void getdist() //get length from user
{
cout << "\nEnter feet: "; cin >> feet;
cout << "Enter inches: "; cin >> inches;
3
void showdist() //display distance

{ cout << feet << "\'-" <<inches << '"\"""'; }
33

int main()

{

Distance dist; //define a named Distance object

21 Aniudl) daa sal) Angld) o palaal)

dist.getdist(); //access object members
dist.showdist(); // with dot operator

Distance* distptr; //pointer to Distance

distptr = new Distance; //points to new Distance object
distptr->getdist(); /laccess object members
distptr->showdist(); // with -> operator

cout << endl;

return 0;

}

An_Array of Pointers to Objects
A common programming construction is an array of pointers to objects. This

arrangement allows easy access to a group of objects, and is more flexible

than placing the objects themselves in an array.

Example §

#include <iostream.h>

class person //class of persons
{
protected:

char name|[40]; //person’s name
public:

void setName() //set the name

{
cout << "Enter name: ";

cin >> name;

}

22 Azipal) Ao)

Anludl o pualaall

void printName() //get the name

{ cout<<'"\n Name is: " <<name; }
33

int main()

{
person* persPtr[100]; //array of pointers to persons
intn=0; //mumber of persons in array
char choice;

do //put persons in array

{
persPtr[n] = new person; //make new object
persPtr[n]->setName(); //set person’s name

n++; //count new person
cout << "Enter another (y/n)? "; //enter another

cin >> choice; //person?

}

while(choice=="y"'); //quit on ‘n’
for(int j=0; j<n; j++) //print names of
{ //all persons

cout << "\nPerson number " << j+1;
persPtr[j]->printName();

3
cout << endl;
return 0;

} //end main()

1 Aniudd) daa yal) Aialil) o_paalacall

Operator overloading

Operator overloading is one of the most exciting features of object-oriented
programming. It can transform complex, obscure program listings into
intuitively obvious ones. For example, statements like

d3.addobjects(d1, d2);

or the similar but equally obscure

d3 = dl.addobjects(d2);

can be changed to the much more readable

d3=d1+d2;

The rather forbidding term operator overloading refers to giving the normal
C++ operators, such as +, *, <=, and +=, additional meanings when they are
applied to user-defined data types.

Normally

a=b+c;

works only with basic types such as int and float, and attempting to apply it
when a, b, and c¢ are objects of a user-defined class will cause complaints
from the compiler. However, using overloading, you can make this
statement legal even when a, b, and c are user-defined types.

In effect, operator overloading gives you the opportunity to redefine the C++
language. If you find yourself limited by the way the C++ operators work,
you can change them to do whatever you want.

By using classes to create new kinds of variables, and operator overloading
to create new definitions for operators, you can extend C++ to be, in many

ways, a new language of your own design.

2 Aniudd) daa yal) Aialil) o_paalacall

Overloading Unary Operators

Unary operators act on only one operand. Examples of unary operators are

the increment and decrement operators ++ and --, and the unary minus, as in

-33.

Example 1:-Write an oop program to increment the counter variable with ++

operator.

Binclude <iostream. h:

cla=z= Counter

i

private:

un=igned int count; SCScount

public:

Counter() : count(0) s“constructor

T F

un=zigned int get_count{) - return count
{ return count;

wold operator ++ () S<increment (prefix)
1

++count

I

T

R R P P S R S
wold maing)

Counter cl, cof; <<define and initialize
cout<<"~nczl=" << cl.get_count(); < displawy
cout<<"~noce=" << cof.get_count():

++cl;: SSincrement ol

++=2; Soincremnsnt o

++=2; Soincremnsnt o

cout<<"~ncl=" << cl.get_count(); ~di=splavy again
cout<<"~noce=" << cof.get_count() << endl:

¥

In this program we create two objects of class Counter: cl and c2. The
counts in the objects are displayed; they are initially 0. Then, using the
overloaded ++ operator, we increment cl once and c2 twice, and display the

resulting values.

3 Aniudd) daa yal) Aialil) o_paalacall

Here’s the program’s output:

cl=0 <— counts are initially 0

c2=0 «——

cl=1 «——— incremented once

c2=2 «—— incremented twice

The statements responsible for these operations are

++cl;

++c2;

++c2;

The ++ operator is applied once to cl and twice to c2. We use prefix

notation in this example.

The operator Keyword

How do we teach a normal C++ operator to act on a user-defined operand?
The keyword operator is used to overload the ++ operator in this declarator:
void operator ++ ()

The return type (void in this case) comes first, followed by the keyword
operator, followed by the operator itself (++), and finally the argument list
enclosed in parentheses (which are empty here). This declarator syntax tells
the compiler to call this member function whenever the ++ operator is
encountered, provided the operand (the variable operated on by the ++) is of
type Counter. The compiler can distinguish between overloaded functions is
by looking at the data types and the number of their arguments. In the same

way, the only way it can distinguish between overloaded operators is by

4 Aniudd) daa yal) AL} o paalaall

looking at the data type of their operands. If the operand is a basic type such
as an int, as in ++intvar; then the compiler will use its built-in routine to
increment an int. But if the operand is a counter variable, the compiler will

know to use our user-written operator++() instead.

Operator Arguments
In main () the ++ operator is applied to a specific object, as in the expression

++cl. Yet operator++() takes no arguments. What does this operator
increment? It increment the count data in the object of which it is a member.
Since member functions can always access the particular object for which
they’ve been invoked, this operator requires no arguments. This is shown in

Figure 1.

++c1; <€———— Thisstatement
causes

this function =
1 obiect to increment
¢l objec this count.
count ‘{/////
No arguments —A
void operator++()
{

++count;
}

Figure 1: Overloaded unary operator: no arguments.
Operator Return Values

The operator++ () function in the Examplel has a subtle defect. You will

discover it if you use a statement like this in main ():

5 Aniudd) daa yal) Aialil) o_paalacall

cl =++c2;

The compiler will complain. Why? Because we have defined the ++ operator
to have a return type of void in the operator++ () function, while in the
assignment statement it is being asked to return a variable of type Counter.
That is, the compiler is being asked to return whatever value c2 has after

being operated on by the ++ operator, and assign this value to cl.

Example 2:-Write an oop program increment the counter variable with

++ operator and return value.

¥include <iostream. h:
class Counter

i

private:

uns=igned int count SSoount

public:

Counteri) : count{0) Sooconstructor

i1

unzigned int get_count() sSreturn count

{ return count; }

Counter operator ++ () SSincrement count

1

++oount Seincrement count

Counter temp; SAmake a temporary Counter
temp.count = count; Sogive 1t =mame walue asz thi=s aobj
return tenp:; Ssreturn the copy

¥

i

P S P P Tl S S P
int main()

Counter 1. c2: Sool=0, c2=0
cout << "~ncl=" <¢ cl.get_count(); sodisplay

cout << "~ncZ=" {¢ c?.get_count();

++cl; srol=1

céd = ++cl; Srol=2, oi=?
cout << "sncl=" << cl.get_count(); -rdisplay again
cout << "~ncZ=" (¢ c?.get_count() << endl;

return 0

¥

6 Aniudd) daa yal) Aialil) o_paalacall

Here the operator++() function creates a new object of type Counter, called
temp, to use as a return value. It increments the count data in its own object
as before, then creates the new temp object and assigns count in the new
object the same value as in its own object. Finally, it returns the temp object.
This has the desired effect. Expressions like ,++¢1 now return a value, so
they can be used in other expressions, such as,c2 = ++cl; as shown in
main(), where the value returned from c1++ is assigned to c2.

The output from this program is

cl=0

c2=0

cl=2

c2=2

Nameless Temporary Objects

In Example 2 we created a temporary object of type Counter, named temp,
whose sole purpose was to provide a return value for the ++ operator. This
required three statements.

Counter temp; // make a temporary Counter object

temp.count = count; // give it same value as this object

return temp; // return it

There are more convenient ways to return temporary objects from functions
and overloaded operators. Let’s examine another approach, as shown in the

example3

7 Aniudd) daa yal) Aialil) o_paalacall

Example 3:-Write an oop program increment the counter variable with ++

operator and unnamed temporary object.

#include <(iostream.h:

clazs Counter

{

Private:

unszighed int count; SAoount

public:

Counter() : count(0) Ssoonstructor no args
i1

Counter{int c) : count({c) < oconstructor, one arg
11

unzigned int get _count({) s return count

I return count; 7

Counter operator ++ () A/lncremnsnt count

i

++count A4 increment count, then return

return Counter({count); A4 an unnaned temporary object initialized to this count
T

k

E S S
int mainf)

Counter cl, c?; socl=0, c2=0

cout <¢ "sncl=" <¢ cl.get_count(); /- display

cout << "snc=" (¢ cf.get_count{);

++c1; soel=1

cd = ++cl; Srol=2, oid=?

cout ¢¢ "s~ncl=" ¢¢ ol get_count(]); Ssdisplay again

cout <¢ "no?=" ¢¢ of . get_count{) << endl;

return 0;

r

In this program a single statement

return Counter(count);

This statement creates an object of type Counter.

Counter(int ¢) : count(c) //constructor, one arg

i)

Once the unnamed object is initialized to the value of count, it can then be

returned. The output of this program is the same as that of Example 2.

8 Aniudd) daa yal) Aialil) o_paalacall

Postfix Notation

We’ve shown the increment operator used only in its prefix form ++cl.
What about postfix, where the variable is incremented after its value is used
in the expression? cl++ to make both versions of the increment operator
work, we define two overloaded ++ operators, as shown in the Example4:

Example 4:-Write an oop program increment the counter variable with ++

operator using both prefix and postfix.

#include <iostream h:

claszs Counter

1

private:

unsigned int count; AAoount

public:

Counter{) : count(0) Soconstructor no args

i}

Counterf{int c) : countic) Sfoonstructor, one arg

117

unsigned int get_count() const Soreturn count

{ return count; }

Counter operator ++ () < increment count (prefix) increment count, then return

return Counter(++count); <<an unnaned temporary object initialized to thisz count

I

Counter operator ++ {int) ~“increment count (postfiz) return an unnamed temporary

return Counter(count++); ““object initialized to this count, then increment count

} .

S
int maini)

Counter cl, c?; Joel=0, c2=0

cout << "~ncl=" << cl.get_count(); --display
cout << "~ncd=" << cl.get_count();

+4cl; srzl=1

cd = ++cl; Srol=2, ci=2 (prefix)
cout <¢ "wncl=" <¢ cl.get_count(); -~ di=zplay
cout ¢¢ "wncd=" (¢ cf. get_count():

cd = cl++t: Sozl=3, cd=2 (postfix)
cout <¢ "wncl=" << cl.get_count{); ~“display again
cout << "snc2=" ¢ cf.get_count() << endl:
return 0

¥

9 Aniudd) daa yal) Aialil) o_paalacall

Now there are two different decelerator for overloading the ++ operator. The
one we’ve seen before, for prefix notation, is Counter operator ++ () The
new one, for postfix notation, is Counter operator ++ (int) The only
difference is the int in the parentheses. This int isn’t really an argument, and
it doesn’t mean integer. It’s simply a signal to the compiler to create the
postfix version of the operator.

Here’s the output from the program:

cl=0

c2=0

cl=2

c2=2

cl=3

c2=2

Overloading Binary Operators
Binary operators can be overloaded just as easily as unary operators. We’ll

look at examples that overload arithmetic operators, comparison operators,

and arithmetic assignment operators.

Arithmetic Operators

Example 5 shows how add two distances dist3.add_dist(dist1, dist2); By
overloading the + operator we can reduce this dense-looking expression to

dist3 = distl + dist2;

10 Aniudd) daa yal) AL} o paalaall

Example 5:-Write an oop program to add two distances objects.

tinclude <iostream by
class Distance //English Distance class

{

private:

int feet;

float inches;

public: /fconstructor (no args)

Distance() ; feet(0), inches(0.0)
{} A/constructor (two args)
Distance(int ft, float in) ; fest(ft), inches(in)

void getdist() //get length from user

{

cout ¢¢ "nEnter feet:
cout <¢ "Enter inches:

" cin vy feet:

;cin »r lnches:

vold showdist() const //dizplay distance

{ cout <¢ fest ¢¢ "“'=" ¢¢ inches ¢ "N}

Distance operator + (Distance) const; //add ? distances
|3

Dizstance Distance: operator + (Distance dZ) const //add this distance to d? return sun

{
int f = feet + d2. feet; /7add the fest
float 1 = inches + d2.inches; //add the inches
ifi1 »= 120} /71t total excesds 17.0, then decrease inchesll
{ 77
1-=12.0; /by 12.0 and
f++; Af1increase feet by 1
K Aéreturn a temporary Distance
return Distance(f.1); //initialized to sum
i

WAL RS PELIE T LB LR R B L PR BT E T BB P LT G A AR il B L A e 07
void mainf)

Distance distl, dist3, distd; //define distances

distl getdist(); Asget distl from user

Distance dist2(11, 6.25); fsdefine, initialize dist?

distd = distl + dist2; //single "+ operator

distd = distl + dist? + dist3; //miltiple '+ operators

cout <¢ "distl : di=stl. showdist
cout << "dist?
cout <¢ "dist3

cout <¢ "distd

}

(); cout <¢ endl; ~/dizplay all lengths
": dist? showdist(); cout << endl;
": diztd showdist(); cout <¢ endl;
" diztd showdist(); cout <¢ endl;

11 Agisdd) Aaa) Aialil) o_paalacall

Here’s the output from the program:

Enter feet: 10

Enter inches: 6.5

distl =10’-6.5” « from user

dist2 = 11°-6.25” «— initialized in program

dist3 =22°-0.75” « dist1+dist2

dist4 =44°-1.5” < dist1+dist2+dist3

When the compiler sees this expression it looks at the argument types, and

finding only type Distance, it realizes it must use the Distance member
function operator+(). The argument on the left side of the operator (distl in
this case) is the object of which the operator is a member. The object on the
right side of the operator (dist2) must be furnished as an argument to the
operator. The operator returns a value, which can be assigned or used in

other ways; in this case it is assigned to dist3.

dist3 = dist1 + dist2; This statement
1 causes
J‘ this object to be added to
this object
dist1 object with this function.

Distance Operator + (Distance d2)

int f = feet + d2.feet;

float i = inches + d2.1inches;

FfCi T >=112.0). =
€i -= 12.0; f++;)

return Distance (f_ i) ;

Figure 2: Overloaded binary operator: one argument.

12 Aniudd) daa yal) Aialil) o_paalacall

Concatenating Strings

We can overload the + operator to perform such concatenation. Here’s the

listing for Example 6:

Example 6:-Write an oop program to concatenate two strings.

#include <iostream h:
finclude <string.h: ~wfor strcpy(). strcat() .strlen()

clas=s String SAouser—defined string type
i

pPrivate;

enum { SZ=80 I} sszize of String objects
char =str[SZ]: A+holds a string
public:

Stringi) Seoconstructor. no args

{ strcpyistr, ""): }

Stringi char =[]) ~“constructor. one arg

{ strcpyistr. =): }

vold display() const ~sdi=splay the String

{ cout << str; }

String operator + (String ==) const <sadd Strings

String temp: <smake a temporary String
if{ =trlen(=tr) + =trlen(==. =tr) « SZ)

stropyitenp.str, =tr): < copy this string to temp
strcat{temp.str, ==.str); ~“add the argument string

h

el=e

{f cout << "~nString overflow";}

return temp: Sosreturn temp String

)

L

B R R e R S T i i B R R e e e e
int mainf)

String =1 = "“nMerrvy Christmasz! "; - uses constructor 2
String =2 = "Happv new vear!": ~“uses constructor 2
String =3; Souses constructor 1

=1 . displayi: <sdi=zplay strings

=2 displayi);

=3 .displavyi():

=3 = =1 + =2; s<add =2 to =l.assign to =3

=3 . di=splavi]; Sodisplay =3

cout << endl;

return 0;

F

13 Aniudd) daa yal) Aialil) o_paalacall

The program first displays three strings separately. (The third is empty at
this point, so nothing is printed when it displays itself.) Then the first two
strings are concatenated and placed in the third, and the third string is
displayed again.

Here’s the output:

Merry Christmas! Happy new year! «—— sl, s2, and s3 (empty)

Merry Christmas! Happy new year! «—— s3 after concatenation

Multiple Overloading

We’ve seen different uses of the + operator: to add English distances and to
concatenate strings.

You could put both these classes together in the same program, and C++
would still know how to interpret the + operator: It selects the correct

function to carry out the “addition” based on the type of operand.

Comparison Operators

Let’s see how to overload a different kind of C++ operator: comparison

operators.

Comparing Distances

In our first example we’ll overload the less than operator (<) in the Distance

class so that we can compare two distances.

14 Aniudd) daa yal) Aialil) o_paalacall

Example 7:-Write an oop program to compare two distances.

#include <io=tream. h:>

cla==s Distance ~~Englizh Distance class
1

private:

int feet:

float inches:

public: ~“oconstructor (no args)
Distance() : fest{0). inche=(0.0)

{ } srconsztructor (two args)

Distance(int ft., float in) : fest(ft). inches(in)
17

wolid getdist() ~~get length from u=ser

i

cin rr f[eet;
cin r» 1lnches;

cout << "~nEnter feet:
cout << "Enter inches:

I

wold showvdist{) const ~~display distance

{ cout << fest << "~'=" << inches << '~"'; %

bool operator < (Distance) const; <scompare distances

L ¥

bool Distance: ;operator ¢ (Distance d?) const A<return the =un
1

float bfl = feset + inches~1:Z;

float bBiz = d2 feet + d2 inche=s~12;

return (bfl < bBf2) ¥ true : false:

r

P R U e T S S e e e e e
wold main()

1

Distance di=stl; ~vdefine Distance distl
distl . getdi=st(); ~vget distl from u=er

Distance dist2{6. 2.5);: rsrdefine and initialize di=tZ
sodizplay distances

cout << "~ndi=tl = " di=tl. showdi=t();

cout << "~ndist? = " di=t? showdist();

if{ di=tl ¢ di=st?) ““overloaded "¢ ocperator

cout << "~ndi=tl i= less than dist2";

el=s=

cout <<" ~ndi=tl i= greater than {(or egual to) dist2";
cout << endl;

¥

This program compares a distance entered by the user with a distance, 6'-
2.5", initialized by the program. Depending on the result, it then prints one

of two possible sentences.

15 Aniudd) daa yal) Aialil) o_paalacall

Here’s some typical output:

Enter feet: 5

Enter inches: 11.5

distl =5°-11.5”

dist2 = 6’-2.5”

distl is less than dist2

The approach used in the operator<() function is similar to overloading the +
operator in the Example 7 except that here the operator<() function has a
return type of Boolean. The return value is false or true, depending on the
comparison of the two distances.

The comparison is made by converting both distances to floating-point feet,
and comparing them using the normal < operator. Remember that the use of
the conditional operator

return (bfl <bf2) ? true : false;

is the same as

if (bfl1 < bf2)

return true;

else

return false;

Comparing Strings

Here’s another example of overloading an operator, this time the equal to
(==) operator. We’ll use it to compare two of our homemade String objects,

returning true if they’re the same and false if they’re different.

16 Aniudd) daa yal) Aialil) o_paalacall

Example 8:-Write an oop program to compare two strings.

finclude <iostream.h:

#include <string. h: Sotor strompl)
SIS SS SIS NS SN SN Ee NSRSy

clazs String SAuzer—defined string type
i

private:

enum { SZ = 80 }; Sozize of String objects
char str[SZ]: s/holds a string

public:

Stringi) Sfoonstructor, no args

I stropyistr, ""); }

String({ char =[]) /“constructor, one arg
I strocpyistr, =); }

vold display() const s display a String

I cout <¢ str; }

vold getstr() Ssread a string

I cin.getistr, SZ): }

bool operator == (String ==) const Ascheck for equality
i

return (strcmpistr, s=.str)==0) ? trus : fal=ze;

I

F

K Sl
int mainf)

String =1 = "yes";

String =2 = "no";

String =3;

cout ¢ "“nEnter 'vesz' or 'no': ";
=3.getstr(); Sget String from user
1f(=3==21) SSoconpare with “yes”
cout << "You typed weshn';

elze 1f(=z3i==s) Ssconpare with "no”
cout << "You typed nosn';

elae

cout << "You didn't follow instructionssn";
return 00;

I

The main() part of this program uses the == operator twice, once to see if a

string input by the user is “yes” and once to see if it’s “no.”

17 Aniudd) daa yal) Aialil) o_paalacall

Here’s the output when the user types “yes”:

Enter ‘yes’ or ‘no’: yes

You typed yes

The operator==() function uses the library function strcmp() to compare the
two C-strings.

This functions return 0 if the strings are equal, a negative number if the first
is less than the second, and a positive number if the first is greater than the
second. Here less than and greater than are used in their lexicographical
sense to indicate whether the first string appears before or after the second in
an alphabetized listing.

Other comparison operators, such as < and >, could also be used to compare
the lexicographical value of strings. Or, alternatively, these comparison
operators could be redefined to compare string lengths. Since you’re the one
defining how the operators are used, you can use any definition that seems

appropriate to your situation.

Arithmetic Assignment Operators

The += operator combines assignment and addition into one step. We’ll use
this operator to add one distance to a second, leaving the result in the first.

In this Example 9 we obtain a distance from the user and add to it a second
distance, initialized to 11'-6.25" by the program.

In this program the addition is carried out in main() with the statement

distl += dist2; This causes the sum of distl and dist2 to be placed in distl.

18 Aniudd) daa yal) Aialil) o_paalacall

Example 9:-Write an oop program to add two distances using += operator.

Finclude <icstreamn.h:
class Distance ~<English Distance class

1

private:

int feet;

float inches:

public: sYconstructor (no args)

Diztance() : feet(l), inches=(0.0)

I } sSconstructor (two args)

Diztance(int ft, float in) : feet{ft), inches(in)
1}

void getdist({) - get length from user

1

cout <¢ "~nEnter feet:
cout << "Enter inches:

;o oin »r feet;
" cin r» inches;
vold showdist() const <sdi=play distance
I couts<fest <¢"-""<{inche=s; }
vold operator += { Distance);

vﬁid Distance: ;operator += (Distance d2)
feet += d? . feet; sradd the fe=st

inches += dZ.inches; ~~add the inches
if(inches »= 12.0) ~-if total exmcesd=s 12.0.then decrease inches

1

inches —= 12.0; <vby 12 0 and
feet++; Soiincreaze feet by 1
k

T

Vi A s ALY R i B e L R L S R e S S R e G R SR R
void maini)

{

Distance distl; <<define distl
di=tl.getdist(); ~rget distl from user

cout ¢ "wndistl = ") distl. showdi=st();
Diztance dist2(11, 6.25); ~vdefine, initialize dist?
cout (¢ "“ndist? = " dist? showdi=sti);

distl += di=st?; --distl = di=stl + dist?
cout << "~nbfter addition,";

cout ¢ "~ndistl = "; distl showdist();
cout << endl;

}

19 Aniudd) daa yal) Aialil) o_paalacall

Here’s a sample of interaction with the program:
Enter feet: 3

Enter inches: 5.75

distl = 3°-5.75”

dist2 = 11°-6.25”

After addition,

distl = 15°-0”

The Subscript Operator ([])

The subscript operator, [], which is normally used to access array elements,

can be overloaded.

Example 10:-Write an oop program to create an array.

Finclude <io=tream. h:»
con=t int LIMIT = 10;
clasz =zafearav

i

private:

int =arr[LIMIT]:

public:

void puteli{int n., int elwvalue) ==t wvalus of =lement
i

if{ n< 0 || n>=LIHIT)

I cout << "~nlIndex out of bound=s";?%

arr[n] = elvalu=:

int geteli{int n) const ~“get valus of =lemsent

i

if{ n< 0 || n>=LIHIT)

I cout <<¢ "~nlIndex out of bound="; }
return arrn]:

T

PP P P P P P P PP R P
int main)

zafearay =al;

for{int j=0; 3<LIHMIT: j++)} - in=ert =slemsent=
=al putelii. j=10):

for(j=0;: j<LIMIT: j++) ~» display =lemsents

int temnp = =al . getel(j):
cout <4 "Element " << j << " iz " <4 temp << endl;

b

return 0O;

20 Aniudd) daa yal) Aialil) o_paalacall

Single access() Function Returning by Reference

As it turns out, we can use the same member function both to insert data into
the safe array and to read it out. The secret is to return the value from the
function by reference. This means we can place the function on the left side
of the equal sign, and the value on the right side will be assigned to the

variable returned by the function.

Example 11:-Write an oop program to create an array and return by reference.

Finclude <io=m=tream. h:
con=t int LIMIT = 100; ~~array =ize
class =zafearaw

g

private:

int arrx[LIMIT]:

public:

inté acces=s(int nl) ~~note: return by reference

1

if{ n< 0 || nx=LIMIT]

4 cout <<« "~nlIndex out of bound=": 1
return arr[n]:

)

o o e R R R
int maini)

=zafearay =al:
for{int j=0; 3<LIMIT: Jj++) -~ insert elemnents

=al acces=s(]) = J3%10; ~r#]lsft*® =ide of egual =ign
fori{j=0; J<LIHIT; j++) ~~di=playvy slemsnt=

1

int temp = =al. acces=(j): ~-*right* =ide of equal =ign
cout< < "Element " << 3 << " 1= " << temp << endl:;

T

return 0

T

The statement
sal.access(j) = j*10; // *left* side of equal sign causes the value j*10 to be
placed in arr[j], the return value of the function. It’s perhaps slightly more

convenient to use the same function for input and output of the safe array

21 Aniudd) daa yal) Aialil) o_paalacall

than it is to use separate functions; there’s one less name to remember. But
there’s an even better way, with no names to remember at all.

Overloaded |] Operator Returning by Reference

To access the safe array using the same subscript ([]) operator that’s used for
normal C++ arrays, we overload the subscript operator in the safearay class.
However, since this operator is commonly used on the left side of the equal

sign, this overloaded function must return by reference.

Example 12:-Write an oop program to create an array using operator [] with

overload by reference.

#include <iostreamn. h:
con=st int LIMIT = 100; ~~array s=ize
clasz=s =zafearav

i

private:

int arr[LIMIT]:

public:

inté operator []i{int n) ~<~note: return by refersnce
1

1f({ n< 0 || nx=LIHIT 1

{ cout << "~nIndex out of bound="; %

return arr[n];

I

B A P o P o R P P P P P P
int main()

=zafearay =al;

fori{int j=0: Jj<LIMIT: j++) ~~in=ert eslement=
zall[j] = j#10; ~r#*left*® =zide of egual =ign
for({j=0; Jj<LIHMIT; Jj++) ~-displav elements=

int temp = =al[j]: ~#*right#* =ide of egual =ign
cout << "Element " << 3 << " 1= " << temp << endl:
I

return 0O

+

In this program we can use the natural subscript expressions

sal[j] = j*10; and temp = sal[j]; for input and output to the safe array.

22

Al A)

ALall) o_yalaall

QOverloadable operators,

Unary. + - * ~ & Bt | —— 0| -z _
}:’:
ne delete
W
Binary: + | - | * 5 | & | A B S
= | +=| -= = &= | |= | =< | »
== | l=] < <= == && | || [1] {0 ;

Figure 3: Overloadable Operators

Operators that can’t be overloaded are listed bellow:

Operator Description

. Dot operdtor.

Flor-») Access member operator.
’ Scope resolution.

7 Conditional operdtor.
sizeof, Size of file

Figure 4: Operators can’t be Overloaded

1 Aaiuil) daa sl) Axldl) & palaal)

Inheritance
Inheritance 1s probably the most powerful feature of object-oriented

programming, after classes themselves. Inheritance is the process of creating
new classes, called derived classes, from existing or base classes. The
derived class inherits all the capabilities of the base class but can add
embellishments and refinements of its own. The base class is unchanged by

this process. The inheritance relationship is shown in Figure 1.

. FeatureA
«_ FeatureB

«_ FeatureC \

1 Arrow means derived from

Derived class
. FeatureD } Defined in derived class
" Feature A >
" Feature B £ Defined in base class
e but accessible from
A -~ . derived class
._FeareC _~

Figure 1: Inheritance.
The arrow in Figure 1 goes in the opposite direction from the derived class

to the base class, and to think of it as a “derived from” arrow.

2 Aaiuil) daa sl) Axldl) & palaal)

Inheritance is an essential part of OOP. Its big payoff is that it permits code
reusability. Once a base class is written and debugged, it need not be
touched again, but, using inheritance can nevertheless be adapted to work in
different situations. Reusing existing code saves time and money and
increases a program’s reliability. Inheritance can also help in the original
conceptualization of a programming problem, and in the overall design of
the program.

An important result of reusability is the ease of distributing class libraries. A
programmer can use a class created by another person or company, and,
without modifying it, derive other classes from it that are suited to particular
situations.

Derived Class and Base Class

Let’s suppose that we have worked long and hard to make the Counter class
operate just the way we want, and we’re pleased with the results, except for
one thing. We really need a way to decrement the count.

We could insert a decrement routine directly into the source code of the

Counter class.

However, there are several reasons that we might not want to do this.

e First, the Counter class works very well and has undergone many hours
of testing and debugging. If we start fooling around with the source code
for Counter, the testing process will need to be carried out again, and of
course we may foul something up and spend hours debugging code that

worked fine before we modified it.

3 Aaiuil) daa sl) Axldl) & palaal)

e Second reason for not modifying the Counter class: We might not have
access to its source code, especially if it was distributed as part of a class
library.

To avoid these problems we can use inheritance to create a new class based

on Counter, without modifying counter itself. A new class, CountDn, that

adds a decrement operator to the Counter class:

Example 1:-Write a program to decrement the counter variable using inheritance.

#include <iostream. h:

class Counter ~~base class

i

protected: <<HOTE: not private
unzigned int count; Scount

public:

Counter() : counti(0) ~sno-arg constructor

1)

Counter{int =) : count(c) /< l-arg constructor
17

unszigned int get_count() const sreturn count
{ return count; }

Counter operator ++ () A incr count (prefix)
{ return Counter(++count); }

e R B O R o R Ll R B R R B T s
class CountDn : public Counter < derived class

public:
Counter operator — () ~7decr count (prefiz)
{ return Counter{——count);

R g s b S I G D ST e R S RO g S R SR i S U R e g
int main()

1

CountDn cl1: ~~cl of class CountDn

cout {¢ "~ncl=" (¢ cl . get_count(); ssdisplay cl
++cl; ++cl; ++cl; A<increment cl, 3 tines

cout <¢ "sncl=" <¢ cl.get_count{); < display 1t
——cl; ——cl; ssdecrement cl. twice

cout << "~ncl=" <¢ cl. get_counti); <sdisplay it
cout << endl;

return 0;

¥

4 Aaiuil) daa sl) Axldl) & palaal)

Output of Examplel
In main() we increment cl three times, print out the resulting value,

decrement cl twice, and finally print out its value again. Here’s the output:
c¢1=0 < after initialization

c1=3 « after ++cl, ++cl, ++cl

c1=1 « after --c1, --c1

The ++ operator, the constructors, the get count() function in the Counter
class, and the -- operator in the CountDn class all work with objects of type
CountDn.

Specifying the Derived Class

Following the Counter class in the listing is the specification for a new class,
CountDn. This class incorporates a new function, operator--(), which
decrements the count. However and here’s the key point the new CountDn
class inherits all the features of the Counter class.

CountDn doesn’t need a constructor or the get count() or operator++()
functions, because these already exist in Counter.

The first line of CountDn specifies that it is derived from Counter: class
CountDn : public Counter

Here we use a single colon (not the double colon used for the scope
resolution operator), followed by the keyword public and the name of the
base class Counter. This sets up the relationship between the classes. This

line says that CountDn is derived from the base class Counter.

5 Aaiuil) daa sl) Axldl) & palaal)

Accessing Base Class Members

An important topic in inheritance is knowing when a member function in the
base class can be used by objects of the derived class. This is called
accessibility. Let’s see how the compiler handles the accessibility issue in
the example 1.

Substituting Base Class Constructors

In the main () part of Examplel we create an object of class CountDn:
CountDn c1;

This causes cl to be created as an object of class CountDn and initialized to
0. But wait—how is this possible? There is no constructor in the CountDn
class specifier, so what entity carries out the initialization? It turns out that—
at least under certain circumstances—if you don’t specify a constructor, the
derived class will use an appropriate constructor from the base class. In
examplel there’s no constructor in CountDn, so the compiler uses the no-
argument constructor from Count.

This flexibility on the part of the compiler using one function because
another isn’t available appears regularly in inheritance situations. Generally,
the substitution is what you want, but sometimes it can be unnerving.

Substituting Base Class Member Functions

The object cl of the CountDn class also uses the operator++() and
get count() functions from the Counter class. The first is used to increment
cl:

++cl;

The second is used to display the count in c1:

6 Aaiuil) daa sl) Axldl) & palaal)

cout << “\nc1=" << cl.get_count();
Again the compiler, not finding these functions in the class of which cl is a
member, uses member functions from the base class.

The protected Access Specifier

We have increased the functionality of a class without modifying it. Well,
almost without modifying it. Let’s look at the single change we made to the
Counter class. In the Counter class in examplel, count is given a new
specifier: protected. What does this do?

Let’s first review what we know about the access specifies private and
public. A member function of a class can always access class members,
whether they are public or private. But an object declared externally can
only invoke (using the dot operator, for example) public members of the
class. It’s not allowed to use private members. For instance, suppose an
object objA is an instance of class A, and function funcA() is a member
function of A. Then in main() (or any other function that is not a member of
A) the statement

objA.funcA();

will not be legal unless funcA() is public. The object objA cannot invoke
private members of class A. Private members are, well, private. This is
shown in Figure 2.

This 1s all we need to know if we don’t use inheritance. With inheritance,
however, there is a whole raft of additional possibilities. The question that
concerns us at the moment is, can member functions of the derived class

access members of the base class? In other words, can operator--() in

7 Aaiuil) daa sl) Axldl) & palaal)

CountDn access count in Counter? The answer is that member functions can
access members of the base class if the members are public, or if they are
protected. They can’t access private members.

We don’t want to make count public, since that would allow it to be
accessed by any function anywhere in the program and eliminate the
advantages of data hiding. A protected member, on the other hand, can be
accessed by member functions in its own class or—and here’s the key—in
any class derived from its own class. It can’t be accessed from functions
outside these classes, such as main(). The situation is shown in Figure 2.

class A

Member function of class A
can access both private and

public members.
f—> private <) P

/—7 public <—\|

Obj A

—

Object of class A can access
only public members of A.

Figure 2: Access specifiers without inheritance

8 Aaiuil) daa sl) Axldl) & palaal)

class Base

4 private
/ protected
class Derv: |~ T publc
public Base it =
— Base 0bjB
private
protected =
public <
Derv ObjD

Figure 3: Access specifiers with inheritance.

Table 1: Inheritance and Accessibility

Access Accessible from Accessible from Accessible from
Specifier Own Class Derived Class Objects Outside Class
public yes yes yes

protected yes yes no

private yes no no

The moral is that if you are writing a class that you suspect might be used, at
any point in the future, as a base class for other classes, then any member
data that the derived classes might need to access should be made protected

rather than private. This ensures that the class is “inheritance ready.”

9 Aaiuil) daa sl) Axldl) & palaal)

Dangers of protected

You should know that there’s a disadvantage to making class members
protected. Say you’ve written a class library, which you’re distributing to the
public. Any programmer who buys this library can access protected
members of your classes simply by deriving other classes from them. This
makes protected members considerably less secure than private members.
To avoid corrupted data, it’s often safer to force derived classes to access
data in the base class using only public functions in the base class, just as
ordinary main() programs must do. Using the protected specifier leads to
simpler programming,

Base Class Unchanged

Remember that, even if other classes have been derived from it, the base
class remains unchanged. In the main() part of Examplel , we could define
objects of type Counter:

Counter c2; < object of base class

Such objects would behave just as they would if CountDn didn’t exist.

Note also that inheritance doesn’t work in reverse. The base class and its
objects don’t know anything about any classes derived from the base class.
In this example that means that objects of class Counter, such as c2, can’t
use the operator--() function in CountDn. If you want a counter that you can
decrement, it must be of class CountDn, not Counter.

Derived Class Constructors

There’s a potential glitch in the examplel program. What happens if we

want to initialize a CountDn object to a value? Can the one-argument

10 Aaiuil) daa sl) Axldl) & palaal)

constructor in Counter be used? The answer is no. As we saw in examplel,
the compiler will substitute a no-argument constructor from the base class,
but it draws the line at more complex constructors. To make such a
definition work we must write a new set of constructors for the derived

class. This is shown in the example2.

Example 2:-Write an oop program to decrement the counter variable using

constructor in the derived class.

finclude <iostream. h:

cla=z=s Counter

i

protected: < HOTE: not private
unzigned int count; scount

public:

Counter() : count({) --constructor. no args

7

Counter{int c) : counti{c) < oconstructor., one arg
7

un=zigned int get_count({) cons=t ~<<return count
{ return count; 7}

Counter operator ++ () << incr count (prefix)
{ return Counter(++countl; T

S

cla=zs CountDn : public Counter

public:

CountDn({) : Counter() ~sconstructor. no args
CountDn{int <) : Counteri{c) ~~conztructor. 1 arg
éDintDn operator — () Srodecr count (prefix)

{ return CountDn{——count);

gttt el G i P e i i gl e e e e S T e P e e
int maini)

CountDn cl; ~class CountDn
CountDn <2{100%;

cout << "tmncl=" << cl. get_count(); sodi=zplay
cout <¢ "tnod=" << o . get_count(); Sodisplav
++cl; ++cl; ++cl; Soincrement ol

cout <¢ "~ncl=" << ol . get_counti); Sodi=plavy it
—c2; —c2; Jodecrement o2

cout <¢ "tnod=" << o2 . get_count{); sodi=plav it
CountDn 3 = ——c2; ~rocreate o3 from o2

cout <¢ "~ncod=" << o3 .get_counti); Sodisplavy o3

cout << endl;
return 0

¥

11 Aaiuil) daa sl) Axldl) & palaal)

This program uses two new constructors in the CountDn class. Here is the
no-argument constructor:

CountDn() : Counter()

{J

This constructor has an unfamiliar feature: the function name following the
colon. This construction causes the CountDn() constructor to call the
Counter() constructor in the base class. In main(), when we say

CountDn c1;

the compiler will create an object of type CountDn and then call the
CountDn constructor to initialize it. This constructor will in turn call the
Counter constructor, which carries out the work. The CountDn() constructor
could add additional statements of its own, but in this case it doesn’t need to,
so the function body between the braces is empty.

The statement

CountDn ¢2(100);

in main() uses the one-argument constructor in CountDn. This constructor
also calls the corresponding one-argument constructor in the base class:
CountDn(int ¢) : Counter(c) < argument c is passed to Counter

{}

This construction causes the argument ¢ to be passed from CountDn() to
Counter(), where it is used to initialize the object. In main(), after initializing
the cl and c2 objects, we increment one and decrement the other and then

print the results.

12 Aaiuil) daa sl) Axldl) & palaal)

The one-argument constructor is also used in an assignment statement.

CountDn ¢3 = --c2;

Overriding Member Functions

You can use member functions in a derived class that override—that is, have
the same name as those in the base class. You might want to do this so that
calls in your program work the same way for objects of both base and
derived classes.

Example 3 “Arrays and Strings.” That program modeled a stack, a simple
data storage device. It allowed you to push integers onto the stack and pop
them off. If you tried to push too many items onto the stack, the program
might bomb, since data would be placed in memory beyond the end of the
st[] array. Or if you tried to pop too many items, the results would be
meaningless, since you would be reading data from memory locations
outside the array.

To cure these defects we’ve created a new class, Stack2, derived from Stack.
Objects of Stack2 behave in exactly the same way as those of Stack, except
that you will be warned if you attempt to push too many items on the stack

or if you try to pop an item from an empty stack.

13 Aaiuil) daa sl) Axldl) & palaal)

Example 3:-Write an oo program to overload functions in base and derived

stack classes.

#include <iostream.hr
¥include <process hr << for exiti)
clas=s =taclk

{

protected: Z#HOTE: can t be private
enum { MAX = 3 1. rw=ize of =tack arraw

int =st[MAX]: A#ztack: array of integers
int top: soindex to top of stack
public:

stack(] Seoonstructor

{ top = -1; %

wold pushiint war) Soput number on stack

{ st[++top] = war:

int pop() Sotalke number off s=tack

{ return st[top—171: ¥

T
T
claz=s =taclk? : public =stack

rublic:
wold pushiint war) ~<put number on =tachk

1
if(top »= HMAX-1) ~»error i1f =stack full

{ cout << "~nError: stack i= full"; exiti{l):; }
staclk: pushiwvar): <call push() in Stack clas=s
int pop() Sotale number off stack

if(top < 02 Soerror 1f stack empty

{ cout << "“nError: stack 1= emptvy~n"; exiti{l): F
return =staclk: popi): ~vcall pop() in Stack clas=s

I

T
A

void maing)

stack? =1;

=1 . push{1l); Sospush =ome values onto stachk

=1 . push(22);

=1 .push(33);

cout << endl << =1 pop(): Sspop =ome walues from stack
cout << endl << =1.popi);

cout << endl << =1.popi);

cout << endl << =1 pop(): S<soops, popped one too many. ..
cout << endl;

¥

14 Aaiuil) daa sl) Axldl) & palaal)

Which Function Is Used?

The Stack?2 class contains two functions, push() and pop(). These functions
have the same names and the same argument and return types, as the
functions in Stack. When we call these functions from main(), in statements
like

sl.push(11);

how does the compiler know which of the two push() functions to use?
Here’s the rule: When the same function exists in both the base class and the
derived class, the function in the derived class will be executed. (This is true
of objects of the derived class. Objects of the base class don’t know anything
about the derived class and will always use the base class functions.) We say
that the derived class function overrides the base class function. So in the
preceding statement, since sl is an object of class Stack2, the push()
function in Stack2 will be executed, not the one in Stack.

The push() function in Stack2 checks to see whether the stack is full. If it is,
it displays an error message and causes the program to exit. If it isn’t, it calls
the push() function in Stack. Similarly, the pop() function in Stack2 checks
to see whether the stack is empty. If it is, it prints an error message and exits;
otherwise, it calls the pop() function in Stack. In main() we push three items

onto the stack, but we pop four. The last pop elicits an error message

15 Aaiuil) daa sl) Axldl) & palaal)

The output

33

22

11

Error: stack is empty and terminates the program.

Scope Resolution with Overridden Functions

How do push() and pop() in Stack2 access push() and pop() in Stack? They
use the scope resolution operator, ::, in the statements

Stack::push(var);

and

return Stack::pop();

These statements specify that the push() and pop() functions in Stack are to
be called. Without the scope resolution operator, the compiler would think
the push() and pop() functions in Stack2 were calling themselves, which—in
this case—would lead to program failure. Using the scope resolution
operator allows you to specify exactly what class the function is a member
of.

Inheritance in the English Distance Class

Let’s derive a new class from Distance. This class will add a single data item
to our feet-and inches measurements: a sign, which can be positive or
negative. When we add the sign, we’ll also need to modify the member

functions so they can work with signed distances.

16 Aaiuil) daa sl) Axldl) & palaal)

Example 4:-Write an oo program to overload functions in base and derived

distence classes.

Finclude <iostream.h:>

enum posheg 4 pos, nheg . Sefor =ign in Di=stSign

L R R St R R L 8 P B B SR i S P R R B PR AR R R RS
class Distance #~English Distance class

protected: #«HOTE: can’t be private
int feet:
float inches;

public:

Distance() : fe=et{0). inche={0.0) Sono—arg constructor

Distance(int ft. float in) : festi{ft). inches(in) ~-"Z2—arg constructor)
vold getdi=st () s~get length from user

1

cin »» feet:
cin »» inches;

cout << "~nEnter fest:
cout << "Enter inches:
¥

vold showdi=t() const ~ssdisplay distance
{ cout << feset <1 "—-"1<¢ inches

P P P P P P P P P P P P P P P

cla=s=s Di=stSign : public Di=stance ~~add=s =ign to Distance
private:

posneg =ighn; Sosign 1= pos O heg

public:

Sono—arg constructor

Di=tSigni{) : Distance() ~~call basse constructor

{ =ign = po=: ¥ <=2t the =ign to +

S72— or 3—arg constructor
Di=tSign(int ft, float in, posneg =g=pos) :Distance(ft, in) <~ call base constructor

{ =ign = =g: } ~szet the =ign

wold getdist() ssget length from user
{

Di=tance: :getdi=st(); #scall base getdist()
char ch; <oget =ign from user

cout <¢ "Enter =sign (+ or —-): cin »» ch:

=ign = (ch=='4+"]') ? pos : neg:

T

wold showdist() const ssdisplay distance

{

cout << ({(sign==po=) ¥ "(+)" "{=1") <szhow =ign
Di=tance: :showdi=t(): ssfeet and inche

/.;’/././///./////./////.//'///.////././///././'///./'////////////////'//////////
int mainf)

Di=t5ign alpha; Ssno—arg constructor
alpha . getdist{); <sget alpha from user
Di=t5ign beta{ll. 6.25): S 2—arg constructor

DiztSign gamma{1l00, 5.5, neg); ~3I-arg constructor
ssdisplay all distances

cout << "~nalpha = "; alpha. showdist{):
cout << "snbeta = "; beta. showdi=t();
cout << "sngamma = " gamma.showdist():
cout << endl:

return 0;

I

17 Aaiuil) daa sl) Axldl) & palaal)

Here the DistSign class adds the functionality to deal with signed numbers.
The Distance class in this program is just the same as in previous programes,
except that the data is protected.

Actually in this case it could be private, because none of the derived-class
functions accesses it. However, it’s safer to make it protected so that a
derived-class function could access it if necessary.

Here’s some sample output:

Enter feet: 6

Enter inches: 2.5

Enter sign (+ or -): -

alpha = (-)6’-2.5”

beta = (+)11°-6.25”

gamma = (-)100°-5.5”

The DistSign class is derived from Distance. It adds a single variable, sign,
which is of type posneg. The sign variable will hold the sign of the distance.
The posneg type is defined in an enum statement to have two possible
values: pos and neg.

Constructors in DistSign

DistSign has two constructors, mirroring those in Distance. The first takes
no arguments; the second takes either two or three arguments. The third,
optional, argument in the second constructor is a sign, either pos or neg. Its
default value is pos. These constructors allow us to define variables (objects)

of type DistSign in several ways.

18 Aaiuil) daa sl) Axldl) & palaal)

Both constructors in DistSign call the corresponding constructors in
Distance to set the feet and- inches values. They then set the sign variable.
The no-argument constructor always sets it to pos. The second constructor
sets it to pos if no third-argument value has been provided, or to a value (pos
or neg) if the argument is specified.

The arguments ft and in, passed from main() to the second constructor in
DistSign, are simply forwarded to the constructor in Distance.

Member Functions in DistSign

Adding a sign to Distance has consequences for both of its member
functions. The getdist() function in the DistSign class must ask the user for
the sign as well as for feet-and-inches values, and the showdist() function
must display the sign along with the feet and inches. These functions call the
corresponding functions in Distance, in the lines

Distance::getdist();

and

Distance::showdist();

	lecture 7 (from member pointer to object arrays)
	lecture 8 (operator overloading)
	lecture 9 (inheritance)

