
 1 البرمجھ الشیئیھ ھبعساالالمحاضره

Member Pointers
It has already been stated that a pointer is a variable which holds the

memory address of another variable of any basic data type such as int, float

or sometimes an array. So far, it has been shown that how a pointer variable

can be declared as a member of a class.

For example, the following declaration of creating an object

Class sample

{

Private :

 int x;

 float y;

 char s;

public:

 void getdata();

 void display();

};

Sample *ptr;

Which ptr is apointer variable that holds the address of the class object

sample and consists of three data members such as int x, float y, and char

s ,and also holds member functions such as getdata() and display().

 2 البرمجھ الشیئیھ ھبعساالالمحاضره

The pointer to an object of class vaiable will be accessed and processed in

one of the following ways .

First way :- (*object name).member name=variable;

The parentheses are essential since the member of class period(.) has a

higher precedence over the indirection operator (*).

Second way:- object name ->member name=variable;

The pointer to the member of a class can be expressed using dash(-)

followed by the greater than(>).

Example 1: Write a simple program using (*) to represent class pointer.

 3 البرمجھ الشیئیھ ھبعساالالمحاضره

Example 2: Write a simple program using (->) to represent class pointer.

This pointer

It is well known that a pointer is a variable which hold the memory

address of another variable. Using the pointer technique, one can

access the data of another variable indirectly. The This pointer is a

variable which is used to access the address of the class itself.

 4 البرمجھ الشیئیھ ھبعساالالمحاضره

Example 1:Write an oo program to display the address of class using

this pointer

The above program create three objects,obj1,obj2,obj3 and displays each

object’s address using this pointer. The display() member function is used to

give the address of the object

Example 2:Write an oo program to display the content of class

member using this pointer

 5 البرمجھ الشیئیھ ھبعساالالمحاضره

References Members
A class data member may define as reference. For example:

class Image {

int width;

int height;

int &widthRef;

//...

};

As with data member constants, a data member reference cannot be

initialized using the same syntax as for other references:

class Image {

int width;

int height;

int &widthRef = width; // illegal!

//...

};

The correct way to initialize a data member reference is through a member

initialization list:

class Image {

public:

Image (const int w, const int h);

private:

int width;

int height;

int &widthRef;

 6 البرمجھ الشیئیھ ھبعساالالمحاضره

//...

};

Image::Image (const int w, const int h) : widthRef(width)

{

//...

}

This causes widthRef to be a reference for width.

Example 1:Write an oo program to represent reference member of rectangle

class

 7 البرمجھ الشیئیھ ھبعساالالمحاضره

Example 2:Write an oo program to represent reference member of point

class

Class Object Member

A data member of a class may be of a user-defined type, that is, an object of

another class. For example, a Rectangle class may be defined using two

 8 البرمجھ الشیئیھ ھبعساالالمحاضره

Point data members which represent the top and bottom-right corners of the

rectangle:

Example 1: Write a simple program to represent class object member.

 9 البرمجھ الشیئیھ ھبعساالالمحاضره

Example 2: Write a simple program to represent class object member.

 10 البرمجھ الشیئیھ ھبعساالالمحاضره

Arrays as Class Member Data
Defining Arrays

Like other variables in C++, an array must be defined before it can be used

to store information.

And, like other definitions, an array definition specifies a variable type and a

name. But it includes another feature: a size. The size specifies how many

data items the array will contain.

It immediately follows the name, and is surrounded by square brackets.

Figure 1 shows the syntax of an array definition.

Figure1: syntax of array definition

The items in an array are called elements (in contrast to the items in a

structure, which are called members). As we noted, all the elements in an

array are of the same type; only the values vary. As specified in the

definition, the array has exactly four elements.

 11 البرمجھ الشیئیھ ھبعساالالمحاضره

Note:- the first array element is numbered 0. Thus, since there are four

elements, the last one is number 3. This is a potentially confusing situation;

you might think the last element in a four-element array would be number 4,

but it’s not.

 12 البرمجھ الشیئیھ ھبعساالالمحاضره

Defining Multidimensional Arrays
The array is defined with two size specifies, each enclosed in brackets:
int dimen2[5][3];

 elem = dimen2[x][y];

Of course there can be arrays of more than two dimensions. A three-

dimensional array is an array of arrays of arrays. It is accessed with three

indexes:
int dimen3[5][3][4];

elem = dimen3[x][y][z];

Strings as Class Members

 13 البرمجھ الشیئیھ ھبعساالالمحاضره

Strings as Class Members – cont.
 This program defines two objects of class part and gives them values

with the setpart() member function. Then it displays them with the

showpart() member function. Here’s the output:

 First part:

 Name= ABC, number=4473, cost=$217.55

 Second part:

 Name= XYZ, number=9924, cost=$419.25

 In the setpart() member function, we use the strcpy() string library

function to copy the string from the argument pname to the class data

member partname. Thus this function serves the same purpose with

string variables that an assignment statement does with simple

 14 البرمجھ الشیئیھ ھبعساالالمحاضره

variables. (A similar function, strncpy(), takes a third argument, which

is the maximum number of characters it will copy. This can help

prevent overrunning the array.)

 Besides those we’ve seen, there are library functions to add a string to

another, compare strings, search for specific characters in strings, and

perform many other actions.

Object Arrays

 An array of a user-defined type is defined and used much in the same

way as an array of a built-in type. For example, a pentagon can be

defined as an array of 5 points:

 Point pentagon[5];

 This definition assumes that Point has an ‘argument-less’ constructor

(i.e., one which can be invoked without arguments). The constructor is

applied to each element of the array.

 The array can also be initialized using a normal array initializer. Each

entry in the initialization list would invoke the constructor with the

desired arguments.

When the initializer has less entries than the array dimension, the

remaining elements are initialized by the argument-less constructor.

For example,

Point pentagon[5] = { Point(10,20), Point(10,30), Point(20,30),

Point(30,20) };

 15 البرمجھ الشیئیھ ھبعساالالمحاضره

 initializes the first four elements of pentagon to explicit points, and

the last element is initialized to (0,0).

Arrays of Objects

 16 البرمجھ الشیئیھ ھبعساالالمحاضره

Example 1: Write a simple program to represent array of class object

point .

 17 البرمجھ الشیئیھ ھبعساالالمحاضره

Example 2: Write a simple program to represent array of class object

rectangle.

 18 البرمجھ الشیئیھ ھبعساالالمحاضره

Example 3: Write a simple program to represent array of class object distance

 19 البرمجھ الشیئیھ ھبعساالالمحاضره

In this program the user types in as many distances as desired. After each

distance is entered, the program asks if the user desires to enter another. If

not, it terminates, and displays all the distances entered so far. Here’s a

sample interaction when the user enters three distances:

Output:-

Enter distance number 1

Enter feet: 5

Enter inches: 4

Enter another (y/n)? y

Enter distance number 2

Enter feet: 6

Enter inches: 2.5

Enter another (y/n)? y

Enter distance number 3

Enter feet: 5

Enter inches: 10.75

Enter another (y/n)? n

Distance number 1 is 5’-4”

Distance number 2 is 6’-2.5”

Distance number 3 is 5’-10.75”

Pointers to Objects
Pointers can point to objects as well as to simple data types and arrays.

We’ve seen many examples of objects defined and given a name, in

statements like

 20 البرمجھ الشیئیھ ھبعساالالمحاضره

Distance dist;

where an object called dist is defined to be of the Distance class. Sometimes,

however, we don’t know, at the time that we write the program, how many

objects we want to create. When this is the case we can use new to create

objects while the program is running. As we’ve seen, new returns a pointer

to an unnamed object.

Example 4
#include <iostream.h>

class Distance //English Distance class

{

private:

int feet;

float inches;

public:

void getdist() //get length from user

{

cout << "\nEnter feet: "; cin >> feet;

cout << "Enter inches: "; cin >> inches;

}

void showdist() //display distance

{ cout << feet << "\'-" << inches << "\""; }

};

int main()

{

Distance dist; //define a named Distance object

 21 البرمجھ الشیئیھ ھبعساالالمحاضره

dist.getdist(); //access object members

dist.showdist(); // with dot operator

Distance* distptr; //pointer to Distance

distptr = new Distance; //points to new Distance object

distptr->getdist(); //access object members

distptr->showdist(); // with -> operator

cout << endl;

return 0;

}

An Array of Pointers to Objects
A common programming construction is an array of pointers to objects. This

arrangement allows easy access to a group of objects, and is more flexible

than placing the objects themselves in an array.

Example 5
#include <iostream.h>

class person //class of persons

{

protected:

char name[40]; //person’s name

public:

void setName() //set the name

{

cout << "Enter name: ";

cin >> name;

}

 22 البرمجھ الشیئیھ ھبعساالالمحاضره

void printName() //get the name

{ cout << "\n Name is: " << name; }

};

int main()

{

person* persPtr[100]; //array of pointers to persons

int n = 0; //number of persons in array

char choice;

do //put persons in array

{

persPtr[n] = new person; //make new object

persPtr[n]->setName(); //set person’s name

n++; //count new person

cout << "Enter another (y/n)? "; //enter another

cin >> choice; //person?

}

while(choice=='y'); //quit on ‘n’

for(int j=0; j<n; j++) //print names of

{ //all persons

cout << "\nPerson number " << j+1;

persPtr[j]->printName();

}

cout << endl;

return 0;

 } //end main()

 1 المحاضره الثامنھ البرمجھ الشیئیھ

Operator overloading
Operator overloading is one of the most exciting features of object-oriented

programming. It can transform complex, obscure program listings into

intuitively obvious ones. For example, statements like

d3.addobjects(d1, d2);

or the similar but equally obscure

d3 = d1.addobjects(d2);

can be changed to the much more readable

d3 = d1 + d2;

The rather forbidding term operator overloading refers to giving the normal

C++ operators, such as +, *, <=, and +=, additional meanings when they are

applied to user-defined data types.

Normally

a = b + c;

works only with basic types such as int and float, and attempting to apply it

when a, b, and c are objects of a user-defined class will cause complaints

from the compiler. However, using overloading, you can make this

statement legal even when a, b, and c are user-defined types.

In effect, operator overloading gives you the opportunity to redefine the C++

language. If you find yourself limited by the way the C++ operators work,

you can change them to do whatever you want.

By using classes to create new kinds of variables, and operator overloading

to create new definitions for operators, you can extend C++ to be, in many

ways, a new language of your own design.

 2 المحاضره الثامنھ البرمجھ الشیئیھ

Overloading Unary Operators
Unary operators act on only one operand. Examples of unary operators are

the increment and decrement operators ++ and --, and the unary minus, as in

-33.

Example 1:-Write an oop program to increment the counter variable with ++

operator.

In this program we create two objects of class Counter: c1 and c2. The

counts in the objects are displayed; they are initially 0. Then, using the

overloaded ++ operator, we increment c1 once and c2 twice, and display the

resulting values.

 3 المحاضره الثامنھ البرمجھ الشیئیھ

Here’s the program’s output:

c1=0 counts are initially 0

c2=0

c1=1 incremented once

c2=2 incremented twice

The statements responsible for these operations are

++c1;

++c2;

++c2;

The ++ operator is applied once to c1 and twice to c2. We use prefix

notation in this example.

The operator Keyword
How do we teach a normal C++ operator to act on a user-defined operand?

The keyword operator is used to overload the ++ operator in this declarator:

void operator ++ ()

The return type (void in this case) comes first, followed by the keyword

operator, followed by the operator itself (++), and finally the argument list

enclosed in parentheses (which are empty here). This declarator syntax tells

the compiler to call this member function whenever the ++ operator is

encountered, provided the operand (the variable operated on by the ++) is of

type Counter. The compiler can distinguish between overloaded functions is

by looking at the data types and the number of their arguments. In the same

way, the only way it can distinguish between overloaded operators is by

 4 المحاضره الثامنھ البرمجھ الشیئیھ

looking at the data type of their operands. If the operand is a basic type such

as an int, as in ++intvar; then the compiler will use its built-in routine to

increment an int. But if the operand is a counter variable, the compiler will

know to use our user-written operator++() instead.

Operator Arguments
In main () the ++ operator is applied to a specific object, as in the expression

++c1. Yet operator++() takes no arguments. What does this operator

increment? It increment the count data in the object of which it is a member.

Since member functions can always access the particular object for which

they’ve been invoked, this operator requires no arguments. This is shown in

Figure 1.

Figure 1: Overloaded unary operator: no arguments.

Operator Return Values
The operator++ () function in the Example1 has a subtle defect. You will

discover it if you use a statement like this in main ():

 5 المحاضره الثامنھ البرمجھ الشیئیھ

c1 = ++c2;

The compiler will complain. Why? Because we have defined the ++ operator

to have a return type of void in the operator++ () function, while in the

assignment statement it is being asked to return a variable of type Counter.

That is, the compiler is being asked to return whatever value c2 has after

being operated on by the ++ operator, and assign this value to c1.

Example 2:-Write an oop program increment the counter variable with

++ operator and return value.

 6 المحاضره الثامنھ البرمجھ الشیئیھ

Here the operator++() function creates a new object of type Counter, called

temp, to use as a return value. It increments the count data in its own object

as before, then creates the new temp object and assigns count in the new

object the same value as in its own object. Finally, it returns the temp object.

This has the desired effect. Expressions like ,++c1 now return a value, so

they can be used in other expressions, such as,c2 = ++c1; as shown in

main(), where the value returned from c1++ is assigned to c2.

The output from this program is

c1=0

c2=0

c1=2

c2=2

Nameless Temporary Objects
In Example 2 we created a temporary object of type Counter, named temp,

whose sole purpose was to provide a return value for the ++ operator. This

required three statements.

Counter temp; // make a temporary Counter object

temp.count = count; // give it same value as this object

return temp; // return it

There are more convenient ways to return temporary objects from functions

and overloaded operators. Let’s examine another approach, as shown in the

example3

 7 المحاضره الثامنھ البرمجھ الشیئیھ

Example 3:-Write an oop program increment the counter variable with ++

operator and unnamed temporary object.

In this program a single statement

return Counter(count);

 This statement creates an object of type Counter.

Counter(int c) : count(c) //constructor, one arg

{ }

Once the unnamed object is initialized to the value of count, it can then be

returned. The output of this program is the same as that of Example 2.

 8 المحاضره الثامنھ البرمجھ الشیئیھ

Postfix Notation

We’ve shown the increment operator used only in its prefix form ++c1.

What about postfix, where the variable is incremented after its value is used

in the expression? c1++ to make both versions of the increment operator

work, we define two overloaded ++ operators, as shown in the Example4:

Example 4:-Write an oop program increment the counter variable with ++

operator using both prefix and postfix.

 9 المحاضره الثامنھ البرمجھ الشیئیھ

Now there are two different decelerator for overloading the ++ operator. The

one we’ve seen before, for prefix notation, is Counter operator ++ () The

new one, for postfix notation, is Counter operator ++ (int) The only

difference is the int in the parentheses. This int isn’t really an argument, and

it doesn’t mean integer. It’s simply a signal to the compiler to create the

postfix version of the operator.

Here’s the output from the program:

c1=0

c2=0

c1=2

c2=2

c1=3

c2=2

Overloading Binary Operators
Binary operators can be overloaded just as easily as unary operators. We’ll

look at examples that overload arithmetic operators, comparison operators,

and arithmetic assignment operators.

Arithmetic Operators

Example 5 shows how add two distances dist3.add_dist(dist1, dist2); By

overloading the + operator we can reduce this dense-looking expression to

dist3 = dist1 + dist2;

 10 المحاضره الثامنھ البرمجھ الشیئیھ

Example 5:-Write an oop program to add two distances objects.

 11 المحاضره الثامنھ البرمجھ الشیئیھ

Here’s the output from the program:
Enter feet: 10
Enter inches: 6.5
dist1 = 10’-6.5” ← from user
dist2 = 11’-6.25” ← initialized in program
dist3 = 22’-0.75” ← dist1+dist2
dist4 = 44’-1.5” ← dist1+dist2+dist3
When the compiler sees this expression it looks at the argument types, and

finding only type Distance, it realizes it must use the Distance member

function operator+(). The argument on the left side of the operator (dist1 in

this case) is the object of which the operator is a member. The object on the

right side of the operator (dist2) must be furnished as an argument to the

operator. The operator returns a value, which can be assigned or used in

other ways; in this case it is assigned to dist3.

Figure 2: Overloaded binary operator: one argument.

 12 المحاضره الثامنھ البرمجھ الشیئیھ

Concatenating Strings
We can overload the + operator to perform such concatenation. Here’s the

listing for Example 6:

Example 6:-Write an oop program to concatenate two strings.

 13 المحاضره الثامنھ البرمجھ الشیئیھ

The program first displays three strings separately. (The third is empty at

this point, so nothing is printed when it displays itself.) Then the first two

strings are concatenated and placed in the third, and the third string is

displayed again.

Here’s the output:

Merry Christmas! Happy new year! s1, s2, and s3 (empty)

Merry Christmas! Happy new year! s3 after concatenation

Multiple Overloading
We’ve seen different uses of the + operator: to add English distances and to

concatenate strings.

You could put both these classes together in the same program, and C++

would still know how to interpret the + operator: It selects the correct

function to carry out the “addition” based on the type of operand.

Comparison Operators

Let’s see how to overload a different kind of C++ operator: comparison

operators.

Comparing Distances

In our first example we’ll overload the less than operator (<) in the Distance

class so that we can compare two distances.

 14 المحاضره الثامنھ البرمجھ الشیئیھ

Example 7:-Write an oop program to compare two distances.

This program compares a distance entered by the user with a distance, 6'–

2.5'', initialized by the program. Depending on the result, it then prints one

of two possible sentences.

 15 المحاضره الثامنھ البرمجھ الشیئیھ

Here’s some typical output:

Enter feet: 5

Enter inches: 11.5

dist1 = 5’-11.5”

dist2 = 6’-2.5”

dist1 is less than dist2

The approach used in the operator<() function is similar to overloading the +

operator in the Example 7 except that here the operator<() function has a

return type of Boolean. The return value is false or true, depending on the

comparison of the two distances.

The comparison is made by converting both distances to floating-point feet,

and comparing them using the normal < operator. Remember that the use of

the conditional operator

return (bf1 < bf2) ? true : false;

is the same as

if (bf1 < bf2)

return true;

else

return false;

Comparing Strings
Here’s another example of overloading an operator, this time the equal to

(==) operator. We’ll use it to compare two of our homemade String objects,

returning true if they’re the same and false if they’re different.

 16 المحاضره الثامنھ البرمجھ الشیئیھ

Example 8:-Write an oop program to compare two strings.

The main() part of this program uses the == operator twice, once to see if a

string input by the user is “yes” and once to see if it’s “no.”

 17 المحاضره الثامنھ البرمجھ الشیئیھ

Here’s the output when the user types “yes”:

Enter ‘yes’ or ‘no’: yes

You typed yes

The operator==() function uses the library function strcmp() to compare the

two C-strings.

This functions return 0 if the strings are equal, a negative number if the first

is less than the second, and a positive number if the first is greater than the

second. Here less than and greater than are used in their lexicographical

sense to indicate whether the first string appears before or after the second in

an alphabetized listing.

Other comparison operators, such as < and >, could also be used to compare

the lexicographical value of strings. Or, alternatively, these comparison

operators could be redefined to compare string lengths. Since you’re the one

defining how the operators are used, you can use any definition that seems

appropriate to your situation.

Arithmetic Assignment Operators

The += operator combines assignment and addition into one step. We’ll use

this operator to add one distance to a second, leaving the result in the first.

In this Example 9 we obtain a distance from the user and add to it a second

distance, initialized to 11'–6.25'' by the program.

In this program the addition is carried out in main() with the statement

dist1 += dist2; This causes the sum of dist1 and dist2 to be placed in dist1.

 18 المحاضره الثامنھ البرمجھ الشیئیھ

Example 9:-Write an oop program to add two distances using += operator.

 19 المحاضره الثامنھ البرمجھ الشیئیھ

Here’s a sample of interaction with the program:

Enter feet: 3

Enter inches: 5.75

dist1 = 3’-5.75”

dist2 = 11’-6.25”

After addition,

dist1 = 15’-0”

The Subscript Operator ([])

The subscript operator, [], which is normally used to access array elements,

can be overloaded.

Example 10:-Write an oop program to create an array.

 20 المحاضره الثامنھ البرمجھ الشیئیھ

Single access() Function Returning by Reference

As it turns out, we can use the same member function both to insert data into

the safe array and to read it out. The secret is to return the value from the

function by reference. This means we can place the function on the left side

of the equal sign, and the value on the right side will be assigned to the

variable returned by the function.

Example 11:-Write an oop program to create an array and return by reference.

The statement

sa1.access(j) = j*10; // *left* side of equal sign causes the value j*10 to be

placed in arr[j], the return value of the function. It’s perhaps slightly more

convenient to use the same function for input and output of the safe array

 21 المحاضره الثامنھ البرمجھ الشیئیھ

than it is to use separate functions; there’s one less name to remember. But

there’s an even better way, with no names to remember at all.

Overloaded [] Operator Returning by Reference

To access the safe array using the same subscript ([]) operator that’s used for

normal C++ arrays, we overload the subscript operator in the safearay class.

However, since this operator is commonly used on the left side of the equal

sign, this overloaded function must return by reference.

Example 12:-Write an oop program to create an array using operator [] with

overload by reference.

In this program we can use the natural subscript expressions

sa1[j] = j*10; and temp = sa1[j]; for input and output to the safe array.

 22 المحاضره الثامنھ البرمجھ الشیئیھ

Figure 3: Overloadable Operators

 Figure 4: Operators can’t be Overloaded

 1 البرمجھ الشیئیھ المحاضره التاسعھ

Inheritance
Inheritance is probably the most powerful feature of object-oriented

programming, after classes themselves. Inheritance is the process of creating

new classes, called derived classes, from existing or base classes. The

derived class inherits all the capabilities of the base class but can add

embellishments and refinements of its own. The base class is unchanged by

this process. The inheritance relationship is shown in Figure 1.

Figure 1: Inheritance.

The arrow in Figure 1 goes in the opposite direction from the derived class

to the base class, and to think of it as a “derived from” arrow.

 2 البرمجھ الشیئیھ المحاضره التاسعھ

Inheritance is an essential part of OOP. Its big payoff is that it permits code

reusability. Once a base class is written and debugged, it need not be

touched again, but, using inheritance can nevertheless be adapted to work in

different situations. Reusing existing code saves time and money and

increases a program’s reliability. Inheritance can also help in the original

conceptualization of a programming problem, and in the overall design of

the program.

An important result of reusability is the ease of distributing class libraries. A

programmer can use a class created by another person or company, and,

without modifying it, derive other classes from it that are suited to particular

situations.

Derived Class and Base Class

Let’s suppose that we have worked long and hard to make the Counter class

operate just the way we want, and we’re pleased with the results, except for

one thing. We really need a way to decrement the count.

We could insert a decrement routine directly into the source code of the

Counter class.

 However, there are several reasons that we might not want to do this.

 First, the Counter class works very well and has undergone many hours

of testing and debugging. If we start fooling around with the source code

for Counter, the testing process will need to be carried out again, and of

course we may foul something up and spend hours debugging code that

worked fine before we modified it.

 3 البرمجھ الشیئیھ المحاضره التاسعھ

 Second reason for not modifying the Counter class: We might not have

access to its source code, especially if it was distributed as part of a class

library.

To avoid these problems we can use inheritance to create a new class based

on Counter, without modifying counter itself. A new class, CountDn, that

adds a decrement operator to the Counter class:

Example 1:-Write a program to decrement the counter variable using inheritance.

 4 البرمجھ الشیئیھ المحاضره التاسعھ

Output of Example1
In main() we increment c1 three times, print out the resulting value,

decrement c1 twice, and finally print out its value again. Here’s the output:

c1=0 ← after initialization

c1=3 ← after ++c1, ++c1, ++c1

c1=1 ← after --c1, --c1

The ++ operator, the constructors, the get_count() function in the Counter

class, and the -- operator in the CountDn class all work with objects of type

CountDn.

Specifying the Derived Class

Following the Counter class in the listing is the specification for a new class,

CountDn. This class incorporates a new function, operator--(), which

decrements the count. However and here’s the key point the new CountDn

class inherits all the features of the Counter class.

CountDn doesn’t need a constructor or the get_count() or operator++()

functions, because these already exist in Counter.

The first line of CountDn specifies that it is derived from Counter: class

CountDn : public Counter

Here we use a single colon (not the double colon used for the scope

resolution operator), followed by the keyword public and the name of the

base class Counter. This sets up the relationship between the classes. This

line says that CountDn is derived from the base class Counter.

 5 البرمجھ الشیئیھ المحاضره التاسعھ

Accessing Base Class Members

An important topic in inheritance is knowing when a member function in the

base class can be used by objects of the derived class. This is called

accessibility. Let’s see how the compiler handles the accessibility issue in

the example 1.

Substituting Base Class Constructors

In the main () part of Example1 we create an object of class CountDn:

CountDn c1;

This causes c1 to be created as an object of class CountDn and initialized to

0. But wait—how is this possible? There is no constructor in the CountDn

class specifier, so what entity carries out the initialization? It turns out that—

at least under certain circumstances—if you don’t specify a constructor, the

derived class will use an appropriate constructor from the base class. In

example1 there’s no constructor in CountDn, so the compiler uses the no-

argument constructor from Count.

This flexibility on the part of the compiler using one function because

another isn’t available appears regularly in inheritance situations. Generally,

the substitution is what you want, but sometimes it can be unnerving.

Substituting Base Class Member Functions

The object c1 of the CountDn class also uses the operator++() and

get_count() functions from the Counter class. The first is used to increment

c1:

++c1;

The second is used to display the count in c1:

 6 البرمجھ الشیئیھ المحاضره التاسعھ

cout << “\nc1=” << c1.get_count();

Again the compiler, not finding these functions in the class of which c1 is a

member, uses member functions from the base class.

The protected Access Specifier

We have increased the functionality of a class without modifying it. Well,

almost without modifying it. Let’s look at the single change we made to the

Counter class. In the Counter class in example1, count is given a new

specifier: protected. What does this do?

Let’s first review what we know about the access specifies private and

public. A member function of a class can always access class members,

whether they are public or private. But an object declared externally can

only invoke (using the dot operator, for example) public members of the

class. It’s not allowed to use private members. For instance, suppose an

object objA is an instance of class A, and function funcA() is a member

function of A. Then in main() (or any other function that is not a member of

A) the statement

objA.funcA();

will not be legal unless funcA() is public. The object objA cannot invoke

private members of class A. Private members are, well, private. This is

shown in Figure 2.

This is all we need to know if we don’t use inheritance. With inheritance,

however, there is a whole raft of additional possibilities. The question that

concerns us at the moment is, can member functions of the derived class

access members of the base class? In other words, can operator--() in

 7 البرمجھ الشیئیھ المحاضره التاسعھ

CountDn access count in Counter? The answer is that member functions can

access members of the base class if the members are public, or if they are

protected. They can’t access private members.

We don’t want to make count public, since that would allow it to be

accessed by any function anywhere in the program and eliminate the

advantages of data hiding. A protected member, on the other hand, can be

accessed by member functions in its own class or—and here’s the key—in

any class derived from its own class. It can’t be accessed from functions

outside these classes, such as main(). The situation is shown in Figure 2.

Figure 2: Access specifiers without inheritance

 8 البرمجھ الشیئیھ المحاضره التاسعھ

Figure 3: Access specifiers with inheritance.

Table 1: Inheritance and Accessibility

The moral is that if you are writing a class that you suspect might be used, at

any point in the future, as a base class for other classes, then any member

data that the derived classes might need to access should be made protected

rather than private. This ensures that the class is “inheritance ready.”

 9 البرمجھ الشیئیھ المحاضره التاسعھ

Dangers of protected

You should know that there’s a disadvantage to making class members

protected. Say you’ve written a class library, which you’re distributing to the

public. Any programmer who buys this library can access protected

members of your classes simply by deriving other classes from them. This

makes protected members considerably less secure than private members.

To avoid corrupted data, it’s often safer to force derived classes to access

data in the base class using only public functions in the base class, just as

ordinary main() programs must do. Using the protected specifier leads to

simpler programming,

Base Class Unchanged

Remember that, even if other classes have been derived from it, the base

class remains unchanged. In the main() part of Example1 , we could define

objects of type Counter:

Counter c2; ← object of base class

Such objects would behave just as they would if CountDn didn’t exist.

Note also that inheritance doesn’t work in reverse. The base class and its

objects don’t know anything about any classes derived from the base class.

In this example that means that objects of class Counter, such as c2, can’t

use the operator--() function in CountDn. If you want a counter that you can

decrement, it must be of class CountDn, not Counter.

Derived Class Constructors

There’s a potential glitch in the example1 program. What happens if we

want to initialize a CountDn object to a value? Can the one-argument

 10 البرمجھ الشیئیھ المحاضره التاسعھ

constructor in Counter be used? The answer is no. As we saw in example1,

the compiler will substitute a no-argument constructor from the base class,

but it draws the line at more complex constructors. To make such a

definition work we must write a new set of constructors for the derived

class. This is shown in the example2.

Example 2:-Write an oop program to decrement the counter variable using

constructor in the derived class.

 11 البرمجھ الشیئیھ المحاضره التاسعھ

This program uses two new constructors in the CountDn class. Here is the

no-argument constructor:

CountDn() : Counter()

{ }

This constructor has an unfamiliar feature: the function name following the

colon. This construction causes the CountDn() constructor to call the

Counter() constructor in the base class. In main(), when we say

CountDn c1;

the compiler will create an object of type CountDn and then call the

CountDn constructor to initialize it. This constructor will in turn call the

Counter constructor, which carries out the work. The CountDn() constructor

could add additional statements of its own, but in this case it doesn’t need to,

so the function body between the braces is empty.

The statement

CountDn c2(100);

in main() uses the one-argument constructor in CountDn. This constructor

also calls the corresponding one-argument constructor in the base class:

CountDn(int c) : Counter(c) ← argument c is passed to Counter

{ }

This construction causes the argument c to be passed from CountDn() to

Counter(), where it is used to initialize the object. In main(), after initializing

the c1 and c2 objects, we increment one and decrement the other and then

print the results.

 12 البرمجھ الشیئیھ المحاضره التاسعھ

The one-argument constructor is also used in an assignment statement.

CountDn c3 = --c2;

Overriding Member Functions

You can use member functions in a derived class that override—that is, have

the same name as those in the base class. You might want to do this so that

calls in your program work the same way for objects of both base and

derived classes.

Example 3 “Arrays and Strings.” That program modeled a stack, a simple

data storage device. It allowed you to push integers onto the stack and pop

them off. If you tried to push too many items onto the stack, the program

might bomb, since data would be placed in memory beyond the end of the

st[] array. Or if you tried to pop too many items, the results would be

meaningless, since you would be reading data from memory locations

outside the array.

To cure these defects we’ve created a new class, Stack2, derived from Stack.

Objects of Stack2 behave in exactly the same way as those of Stack, except

that you will be warned if you attempt to push too many items on the stack

or if you try to pop an item from an empty stack.

 13 البرمجھ الشیئیھ المحاضره التاسعھ

Example 3:-Write an oo program to overload functions in base and derived

stack classes.

 14 البرمجھ الشیئیھ المحاضره التاسعھ

Which Function Is Used?

The Stack2 class contains two functions, push() and pop(). These functions

have the same names and the same argument and return types, as the

functions in Stack. When we call these functions from main(), in statements

like

s1.push(11);

how does the compiler know which of the two push() functions to use?

Here’s the rule: When the same function exists in both the base class and the

derived class, the function in the derived class will be executed. (This is true

of objects of the derived class. Objects of the base class don’t know anything

about the derived class and will always use the base class functions.) We say

that the derived class function overrides the base class function. So in the

preceding statement, since s1 is an object of class Stack2, the push()

function in Stack2 will be executed, not the one in Stack.

The push() function in Stack2 checks to see whether the stack is full. If it is,

it displays an error message and causes the program to exit. If it isn’t, it calls

the push() function in Stack. Similarly, the pop() function in Stack2 checks

to see whether the stack is empty. If it is, it prints an error message and exits;

otherwise, it calls the pop() function in Stack. In main() we push three items

onto the stack, but we pop four. The last pop elicits an error message

 15 البرمجھ الشیئیھ المحاضره التاسعھ

The output

33

22

11

Error: stack is empty and terminates the program.

Scope Resolution with Overridden Functions

How do push() and pop() in Stack2 access push() and pop() in Stack? They

use the scope resolution operator, ::, in the statements

Stack::push(var);

and

return Stack::pop();

These statements specify that the push() and pop() functions in Stack are to

be called. Without the scope resolution operator, the compiler would think

the push() and pop() functions in Stack2 were calling themselves, which—in

this case—would lead to program failure. Using the scope resolution

operator allows you to specify exactly what class the function is a member

of.

Inheritance in the English Distance Class

Let’s derive a new class from Distance. This class will add a single data item

to our feet-and inches measurements: a sign, which can be positive or

negative. When we add the sign, we’ll also need to modify the member

functions so they can work with signed distances.

 16 البرمجھ الشیئیھ المحاضره التاسعھ

Example 4:-Write an oo program to overload functions in base and derived

distence classes.

 17 البرمجھ الشیئیھ المحاضره التاسعھ

Here the DistSign class adds the functionality to deal with signed numbers.

The Distance class in this program is just the same as in previous programs,

except that the data is protected.

Actually in this case it could be private, because none of the derived-class

functions accesses it. However, it’s safer to make it protected so that a

derived-class function could access it if necessary.

Here’s some sample output:

Enter feet: 6

Enter inches: 2.5

Enter sign (+ or -): -

alpha = (-)6’-2.5”

beta = (+)11’-6.25”

gamma = (-)100’-5.5”

The DistSign class is derived from Distance. It adds a single variable, sign,

which is of type posneg. The sign variable will hold the sign of the distance.

The posneg type is defined in an enum statement to have two possible

values: pos and neg.

Constructors in DistSign

DistSign has two constructors, mirroring those in Distance. The first takes

no arguments; the second takes either two or three arguments. The third,

optional, argument in the second constructor is a sign, either pos or neg. Its

default value is pos. These constructors allow us to define variables (objects)

of type DistSign in several ways.

 18 البرمجھ الشیئیھ المحاضره التاسعھ

Both constructors in DistSign call the corresponding constructors in

Distance to set the feet and- inches values. They then set the sign variable.

The no-argument constructor always sets it to pos. The second constructor

sets it to pos if no third-argument value has been provided, or to a value (pos

or neg) if the argument is specified.

The arguments ft and in, passed from main() to the second constructor in

DistSign, are simply forwarded to the constructor in Distance.

Member Functions in DistSign

Adding a sign to Distance has consequences for both of its member

functions. The getdist() function in the DistSign class must ask the user for

the sign as well as for feet-and-inches values, and the showdist() function

must display the sign along with the feet and inches. These functions call the

corresponding functions in Distance, in the lines

Distance::getdist();

and

Distance::showdist();

	lecture 7 (from member pointer to object arrays)
	lecture 8 (operator overloading)
	lecture 9 (inheritance)

